首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2494篇
  免费   170篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   42篇
  2020年   25篇
  2019年   41篇
  2018年   44篇
  2017年   48篇
  2016年   63篇
  2015年   114篇
  2014年   151篇
  2013年   164篇
  2012年   228篇
  2011年   201篇
  2010年   142篇
  2009年   111篇
  2008年   151篇
  2007年   116篇
  2006年   135篇
  2005年   142篇
  2004年   125篇
  2003年   108篇
  2002年   78篇
  2001年   57篇
  2000年   81篇
  1999年   45篇
  1998年   20篇
  1997年   13篇
  1996年   8篇
  1995年   12篇
  1994年   8篇
  1993年   18篇
  1992年   20篇
  1991年   17篇
  1990年   13篇
  1989年   10篇
  1988年   13篇
  1987年   8篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   10篇
  1982年   10篇
  1981年   3篇
  1980年   8篇
  1979年   12篇
  1978年   3篇
  1977年   5篇
  1974年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2665条查询结果,搜索用时 15 毫秒
81.
82.
83.
During a previous study on the molecular interaction between commensal bacteria and host gut immunity, two novel bacterial strains, A911T and G707T, were isolated from the gut of Drosophila melanogaster. In this study, these strains were characterized in a polyphasic taxonomic study using phenotypic, genetic, and chemotaxonomic analyses. We show that the strains represent novel species in the family Acetobacteraceae. Strain G707T, a highly pathogenic organism, represents a new species in the genus Gluconobacter, “Gluconobacter morbifer” sp. nov. (type strain G707 = KCTC 22116T = JCM 15512T). Strain A911T, dominantly present in the normal Drosphila gut community, represents a novel genus and species, designated “Commensalibacter intestini” gen. nov., sp. nov. (type strain A911 = KCTC 22117T = JCM 15511T).  相似文献   
84.
Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of −60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.  相似文献   
85.

Background

Fimasartan is the ninth angiotensin receptor blocker to be developed. However, it has not yet been evaluated for reno-protective effects in hypertensive diabetic chronic kidney disease (CKD). The target blood pressure (BP) for hypertensive diabetic CKD is also a controversial topic. This trial was designed to assess the reno-protective effects of fimasartan compared to those of losartan as a primary outcome. This study also compares the two drugs with regard to cardiovascular and renal outcomes in accordance with target systolic BP (SBP) (as secondary outcomes).

Methods

This study is a prospective, phase III, randomized, double-blind, active-controlled, non-inferiority, four-parallel group, dose-titration, multicenter trial. We recruit patients with hypertensive diabetic CKD with overt proteinuria. Participants will be randomized into four groups (1:1:1:1): fimasartan standard SBP control (SBP?<?140 mmHg); fimasartan strict SBP control (SBP?<?130 mmHg); losartan standard SBP control; and losartan strict SBP control. After 24 weeks, all individuals are treated with fimasartan for an additional 120 weeks in an open-label design, maintaining their assigned SBP control groups as randomized. The primary endpoint is the rate of change in proteinuria, which is assessed using the spot urine albumin–creatinine ratio at 24 weeks. The secondary endpoints are the cardiovascular and renal outcomes at 144 weeks compared between the strict SBP and standard SBP control groups.

Discussion

The FANTASTIC is a clinical study to provide: (1) the reno-protective effect of fimasartan; and (2) the target BP to reduce adverse outcomes in hypertensive diabetic CKD with overt proteinuria.

Trial registration

Clinicaltrials.gov, NCT02620306. Registered on 1 December 2015.
  相似文献   
86.
Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4‐dideoxy‐1,4‐imino‐d‐arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC‐rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU‐positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate‐mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α‐cyano‐4‐hydroxy‐cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986–995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   
87.
The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein β-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of β-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes.  相似文献   
88.
For sustainable use and suitable management of larch plantations, we must clarify the ecophysiological responses of larch species to environmental changes. The physical environment has been changing dramatically, e.g., increase in atmospheric CO2 concentration ([CO2]), nitrogen (N) deposition, and atmospheric ozone concentration ([O3]), and these changes may negatively affect growth of larch species. This review summarizes the previous experimental studies on the ecophysiological responses of larch species to elevated [CO2], soil acidification, elevated [O3], and N load. Based on the advanced studies, although elevated [CO2] will stimulate the productivity of larch, increase of [O3] and severe soil acidification will reduce it. Increase of N deposition, at least, will not negatively affect larch productivity. Finally, we propose the future direction for investigation to understand the mechanism of the responses of larch species and to predict the associated risk.  相似文献   
89.
90.
Tar reduction in pyrolysis vapours from biomass over a hot char bed   总被引:3,自引:0,他引:3  
The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 °C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0–450 mm), temperatures (500–800 °C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84–14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 °C, compared to that for pyrolysis at 500 °C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 °C to 8.0 wt% at 800 °C, forming CO, H2 and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 °C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号